The Nature of Galaxy Bias and Clustering
نویسندگان
چکیده
We have used a combination of high resolution cosmological N-body simulations and semi-analytic modelling of galaxy formation to investigate the processes that determine the spatial distribution of galaxies in cold dark matter (CDM) models and its relation to the spatial distribution of dark matter. The galaxy distribution depends sensitively on the efficiency with which galaxies form in halos of different mass. In small mass halos, galaxy formation is inhibited by the reheating of cooled gas by feedback processes, whereas in large mass halos, it is inhibited by the long cooling time of the gas. As a result, the mass-to-light ratio of halos has a deep minimum at the halo mass, ∼ 10M , associated with L∗ galaxies, where galaxy formation is most efficient. This dependence of galaxy formation efficiency on halo mass leads to a scale-dependent bias in the distribution of galaxies relative to the distribution of mass. On large scales, the bias in the galaxy distribution is related in a simple way to the bias in the distribution of massive halos. On small scales, the correlation function is determined by the interplay between various effects including the spatial exclusion of dark matter halos, the distribution function of the number of galaxies occupying a single dark matter halo and, to a lesser extent, dynamical friction. Remarkably, these processes conspire to produce a correlation function in a flat, Ω0 = 0.3, CDM model that is close to a power-law over nearly four orders of magnitude in amplitude. This model agrees well with the correlation function of galaxies measured in the APM survey. On small scales, the model galaxies are less strongly clustered than the dark matter, whereas on large scales they trace the occupied halos. Our clustering predictions are robust to changes in the parameters of the galaxy formation model, provided only those models that match the bright end of the galaxy luminosity function are considered.
منابع مشابه
Breaking the Degeneracies between Cosmology and Galaxy Bias
Adopting the framework of the Halo Occupation Distribution (HOD), we investigate the ability of galaxy clustering measurements to simultaneously constrain cosmological parameters and galaxy bias. Starting with a fiducial cosmological model and galaxy HOD, we calculate spatial clustering observables on a range of length and mass scales, dynamical clustering observables that depend on galaxy pecu...
متن کاملStrong clustering of underdense regions and the environmental dependence of clustering from Gaussian initial conditions
We discuss two slightly counter-intuitive findings about the environmental dependence of clustering in the Sloan Digital Sky Survey. First, we find that the relation between clustering strength and density is not monotonic: galaxies in the densest regions are more strongly clustered than are galaxies in regions of moderate overdensity; galaxies in moderate overdensities are more strongly cluste...
متن کاملCosmology with void-galaxy correlations.
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, c...
متن کاملStellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملThe Imprint of Cosmic Reionization on Galaxy Clustering
We consider the effect of reionization on the clustering properties of galaxy samples at intermediate redshifts (z ∼ 0.3–5.5). Current models for the reionization of intergalactic hydrogen predict that overdense regions will be reionized early, thus delaying the build up of stellar mass in the progenitors of massive lower-redshift galaxies. As a result, the stellar populations observed in inter...
متن کاملاندازهگیری نمایه عمق نوری خوشههای کهکشانی با استفاده از اثرسونیائف زلدوویچ جنبشی
baryonic matter distribution in the large-scale structures is one of the main questions in cosmology. This distribution can provide valuable information regarding the processes of galaxy formation and evolution. On the other hand, the missing baryon problem is still under debate. One of the most important cosmological structures for studying the rate and the distribution of the baryons is gal...
متن کامل